Item Description

Merchandise Description
Massive equipment bearing 6316 DGBB

Item Image/Specifics

The variety of  bearings , element resources utilised will figure out the daily life span, dependability and performance of the bearings. Nonetheless, there are a lot of aspects affecting the efficiency of the bearings which include the assortment of the load carrying capability, the rolling contact problems, and the cleanliness of the working environment and the dimensional balance of the bearing components.

Fuda bearing business has adopted the chrome metal material(Gcr15) in our manufacturing of the bearing.

Bearing No.  I. D O. D W Loading Ranking(KN) Steel Ball Parameter Max Pace
D D B Dynamic Static No.  Dimension Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
six sets by means of more than one thousand men and women working. Besides, the annual export amount of bearings was about eighty million USD.

three.Exit: Our business is 1 of the greatest bearing manufacturers and exporters in china. Our goods are marketed all in excess of the planet, contain Europe, North America, the Middle East, Southeast Asia and South The united states and so forth.

4.Certificates: ISO9001:2008  IATF16949:2016  ISO14001:2004.

five.Brand name: We have 2 independent brands : F&D bearing CBB bearing.

6.Good quality Management: Fuda organization has a complete established of high quality control technique, including the purchase of uncooked resources, generation, assembly and packaging a series of factors. For case in point, in assembling workshop, we  undertake entire automatic production line and there are a lot of tests equipments to validate the top quality of the bearings.

7.Service: Higher good quality, very good credit rating and excellent provider are the tenet of our company. Customers’satisfaction is our lifeline, as properly as our optimum honor. We will do our very best to meet up with your specifications, and will do greater in the long term.

Many thanks for your time to overview fudabearings !

Contact Angle: 0-60°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel

###

Samples:
US$ 80/Box
1 Box(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6000 10 0.3937 26 1.0236 8 0.3150 4.55 1.95 7 4.763 29000 34000
6001 12 0.4724 28 1.1024 8 0.3150 5.10 2.39 8 4.763 26000 30000
6002 15 0.5906 32 1.2598 9 0.3543 5.60 2.84 9 4.763 22000 26000
6003 17 0.6693 35 1.3780 10 0.3937 6.80 3.35 10 4.763 20000 24000
6004 20 0.7874 42 1.6535 12 0.4724 9.40 5.05 9 6.350 18000 21000
6005 25 0.9843 47 1.8504 12 0.4724 10.10 5.85 10 6.350 15000 18000
6006 30 1.1811 55 2.1654 13 0.5118 13.20 8.30 11 7.144 13000 15000
6007 35 1.3780 62 2.4409 14 0.5512 16.00 10.30 11 7.938 12000 14000
6008 40 1.5748 68 2.6772 15 0.5906 16.80 11.50 12 7.938 10000 12000
6009 45 1.7717 75 2.9528 16 0.6299 21.00 15.10 12 8.731 9200 11000
6010 50 1.9685 80 3.1496 16 0.6299 21.80 16.60 13 8.731 8400 9800
6011 55 2.1654 90 3.5433 18 0.7087 28.30 21.20 12 11.000 7700 9000
6012 60 2.3622 95 3.7402 18 0.7087 29.50 23.20 13 11.000 7000 8300
6013 65 2.5591 100 3.9370 18 0.7087 30.50 25.20 13 11.112 6500 7700
6014 70 2.7559 110 4.3307 20 0.7874 38.00 31.00 13 12.303 6100 7100
6015 75 2.9528 115 4.5276 20 0.7874 39.50 33.50 14 12.303 5700 6700
6016 80 3.1496 125 4.9213 22 0.8661 47.50 40.00 14 13.494 5300 6200

###

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6200 10 0.3937 30 1.1811 9 0.3543 5.10 2.39 8 4.763 25000 30000
6201 12 0.4724 32 1.2598 10 0.3937 6.10 2.75 7 5.953 22000 26000
6202 15 0.5906 35 1.3780 11 0.4331 7.75 3.60 8 5.953 19000 23000
6203 17 0.6693 40 1.5748 12 0.4724 9.60 4.60 8 6.747 18000 21000
6204 20 0.7874 47 1.8504 14 0.5512 12.80 6.65 8 7.938 16000 18000
6205 25 0.9843 52 2.0472 15 0.5906 14.00 7.85 9 7.938 13000 15000
6206 30 1.1811 62 2.4409 16 0.6299 19.50 11.30 9 9.525 11000 13000
6207 35 1.3780 72 2.8346 17 0.6693 25.70 15.30 9 11.112 9800 11000
6208 40 1.5748 80 3.1496 18 0.7087 29.10 17.80 9 12.000 8700 10000
6209 45 1.7717 85 3.3465 19 0.7480 32.50 20.40 10 12.000 7800 9200
6210 50 1.9685 90 3.5433 20 0.7874 35.00 23.20 10 12.700 7100 8300
6211 55 2.1654 100 3.9370 21 0.8268 43.50 29.20 10 14.288 6400 7600
6212 60 2.3622 110 4.3307 22 0.8661 52.50 36.00 10 15.081 6000 7000
6213 65 2.5591 120 4.7244 23 0.9055 57.50 40.00 10 16.669 5500 6500
6214 70 2.7559 125 4.9213 24 0.9449 62.00 44.00 11 16.462 5100 6000
6215 75 2.9528 130 5.1181 25 0.9843 66.00 49.50 11 17.462 4800 5600
6216 80 3.1496 140 5.5118 26 1.0236 72.50 53.00 11 18.256 4500 5300
6217 85 3.3465 150 5.9055 28 1.1024 83.50 64.00 11 19.844 4200 5000
6218 90 3.5433 160 6.2992 30 1.1811 96.00 71.50 10 22.225 4000 4700

###

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6300 10 0.3937 35 1.3780 11 0.4331 8.20 3.50 6 7.144 23000 27000
6301 12 0.4724 37 1.4567 12 0.4724 9.70 4.20 6 7.938 20000 24000
6302 15 0.5906 42 1.6535 13 0.5118 11.40 5.45 7 7.938 17000 21000
6303 17 0.6693 47 1.8504 14 0.5512 13.50 6.55 7 8.731 16000 19000
6304 20 0.7874 52 2.0472 15 0.5906 15.90 7.90 7 9.525 14000 27000
6305 25 0.9843 62 2.4409 17 0.6693 21.20 10.90 7 11.500 12000 14000
6306 30 1.1811 72 2.8346 19 0.7480 26.70 15.00 8 12.000 10000 12000
6307 35 1.3780 80 3.1496 21 0.8268 33.50 19.10 8 13.494 8800 10000
6308 40 1.5748 90 3.5433 23 0.9055 40.50 24.00 8 15.081 7800 9200
6309 45 1.7717 100 3.9370 25 0.9843 53.00 32.00 8 17.462 7000 8200
6310 50 1.9685 110 4.3307 27 1.0630 62.00 38.50 8 19.050 6400 7500
6311 55 2.1654 120 4.7244 29 1.1417 71.50 45.00 8 20.638 5800 6800
6312 60 2.3622 130 5.1181 31 1.2205 82.00 52.00 8 22.225 5400 6300
6313 65 2.5591 140 5.5118 33 1.2992 92.50 60.00 8 24.000 4900 5800
6314 70 2.7559 150 5.9055 35 1.3780 104.00 68.00 8 25.400 4600 5400
6315 75 2.9528 160 6.2992 37 1.4567 113.00 77.00 8 26.988 4300 5000
6316 80 3.1496 170 6.6929 39 1.5354 123.00 86.50 8 28.575 4000 4700

###

Packaging Detail 1. Industrial Exporting Package with anti-tarnish paper/Carton/Pallet
2. Individual plastic/Carton/pallet
3. As the customers’ requirements
Delivery Detail About 60 days,OEM ordercan be discussing
Contact Angle: 0-60°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel

###

Samples:
US$ 80/Box
1 Box(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6000 10 0.3937 26 1.0236 8 0.3150 4.55 1.95 7 4.763 29000 34000
6001 12 0.4724 28 1.1024 8 0.3150 5.10 2.39 8 4.763 26000 30000
6002 15 0.5906 32 1.2598 9 0.3543 5.60 2.84 9 4.763 22000 26000
6003 17 0.6693 35 1.3780 10 0.3937 6.80 3.35 10 4.763 20000 24000
6004 20 0.7874 42 1.6535 12 0.4724 9.40 5.05 9 6.350 18000 21000
6005 25 0.9843 47 1.8504 12 0.4724 10.10 5.85 10 6.350 15000 18000
6006 30 1.1811 55 2.1654 13 0.5118 13.20 8.30 11 7.144 13000 15000
6007 35 1.3780 62 2.4409 14 0.5512 16.00 10.30 11 7.938 12000 14000
6008 40 1.5748 68 2.6772 15 0.5906 16.80 11.50 12 7.938 10000 12000
6009 45 1.7717 75 2.9528 16 0.6299 21.00 15.10 12 8.731 9200 11000
6010 50 1.9685 80 3.1496 16 0.6299 21.80 16.60 13 8.731 8400 9800
6011 55 2.1654 90 3.5433 18 0.7087 28.30 21.20 12 11.000 7700 9000
6012 60 2.3622 95 3.7402 18 0.7087 29.50 23.20 13 11.000 7000 8300
6013 65 2.5591 100 3.9370 18 0.7087 30.50 25.20 13 11.112 6500 7700
6014 70 2.7559 110 4.3307 20 0.7874 38.00 31.00 13 12.303 6100 7100
6015 75 2.9528 115 4.5276 20 0.7874 39.50 33.50 14 12.303 5700 6700
6016 80 3.1496 125 4.9213 22 0.8661 47.50 40.00 14 13.494 5300 6200

###

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6200 10 0.3937 30 1.1811 9 0.3543 5.10 2.39 8 4.763 25000 30000
6201 12 0.4724 32 1.2598 10 0.3937 6.10 2.75 7 5.953 22000 26000
6202 15 0.5906 35 1.3780 11 0.4331 7.75 3.60 8 5.953 19000 23000
6203 17 0.6693 40 1.5748 12 0.4724 9.60 4.60 8 6.747 18000 21000
6204 20 0.7874 47 1.8504 14 0.5512 12.80 6.65 8 7.938 16000 18000
6205 25 0.9843 52 2.0472 15 0.5906 14.00 7.85 9 7.938 13000 15000
6206 30 1.1811 62 2.4409 16 0.6299 19.50 11.30 9 9.525 11000 13000
6207 35 1.3780 72 2.8346 17 0.6693 25.70 15.30 9 11.112 9800 11000
6208 40 1.5748 80 3.1496 18 0.7087 29.10 17.80 9 12.000 8700 10000
6209 45 1.7717 85 3.3465 19 0.7480 32.50 20.40 10 12.000 7800 9200
6210 50 1.9685 90 3.5433 20 0.7874 35.00 23.20 10 12.700 7100 8300
6211 55 2.1654 100 3.9370 21 0.8268 43.50 29.20 10 14.288 6400 7600
6212 60 2.3622 110 4.3307 22 0.8661 52.50 36.00 10 15.081 6000 7000
6213 65 2.5591 120 4.7244 23 0.9055 57.50 40.00 10 16.669 5500 6500
6214 70 2.7559 125 4.9213 24 0.9449 62.00 44.00 11 16.462 5100 6000
6215 75 2.9528 130 5.1181 25 0.9843 66.00 49.50 11 17.462 4800 5600
6216 80 3.1496 140 5.5118 26 1.0236 72.50 53.00 11 18.256 4500 5300
6217 85 3.3465 150 5.9055 28 1.1024 83.50 64.00 11 19.844 4200 5000
6218 90 3.5433 160 6.2992 30 1.1811 96.00 71.50 10 22.225 4000 4700

###

Bearing No.  I. D O. D W Loading Rating(KN) Steel Ball Parameter Max Speed
D D B Dynamic Static No.  Size Grease Oil
mm Inch mm Inch mm Inch Cr Cor mm R/min R/min
6300 10 0.3937 35 1.3780 11 0.4331 8.20 3.50 6 7.144 23000 27000
6301 12 0.4724 37 1.4567 12 0.4724 9.70 4.20 6 7.938 20000 24000
6302 15 0.5906 42 1.6535 13 0.5118 11.40 5.45 7 7.938 17000 21000
6303 17 0.6693 47 1.8504 14 0.5512 13.50 6.55 7 8.731 16000 19000
6304 20 0.7874 52 2.0472 15 0.5906 15.90 7.90 7 9.525 14000 27000
6305 25 0.9843 62 2.4409 17 0.6693 21.20 10.90 7 11.500 12000 14000
6306 30 1.1811 72 2.8346 19 0.7480 26.70 15.00 8 12.000 10000 12000
6307 35 1.3780 80 3.1496 21 0.8268 33.50 19.10 8 13.494 8800 10000
6308 40 1.5748 90 3.5433 23 0.9055 40.50 24.00 8 15.081 7800 9200
6309 45 1.7717 100 3.9370 25 0.9843 53.00 32.00 8 17.462 7000 8200
6310 50 1.9685 110 4.3307 27 1.0630 62.00 38.50 8 19.050 6400 7500
6311 55 2.1654 120 4.7244 29 1.1417 71.50 45.00 8 20.638 5800 6800
6312 60 2.3622 130 5.1181 31 1.2205 82.00 52.00 8 22.225 5400 6300
6313 65 2.5591 140 5.5118 33 1.2992 92.50 60.00 8 24.000 4900 5800
6314 70 2.7559 150 5.9055 35 1.3780 104.00 68.00 8 25.400 4600 5400
6315 75 2.9528 160 6.2992 37 1.4567 113.00 77.00 8 26.988 4300 5000
6316 80 3.1496 170 6.6929 39 1.5354 123.00 86.50 8 28.575 4000 4700

###

Packaging Detail 1. Industrial Exporting Package with anti-tarnish paper/Carton/Pallet
2. Individual plastic/Carton/pallet
3. As the customers’ requirements
Delivery Detail About 60 days,OEM ordercan be discussing

How to Replace a Bearing

If you want to select a bearing for a specific application, you should know a few basics. This article will give you an overview of ball, angular contact, and sliding-contact bearings. You can choose a bearing according to the application based on the characteristics of its material and preload. If you are not sure how to choose a bearing, try experimenting with it. The next step is to understand the Z-axis, which is the axes along which the bearing moves.

Z axis

When it comes to replacing your Z axis bearing, there are several things you must know. First, you need to make sure that the bearings are seated correctly. Then, you should check the tension and rotation of each one. To ensure that both bearings are equally tensioned, you should flex the Core to the desired angle. This will keep the Z axis perpendicular to the work surface. To do this, first remove the Z axis bearing from its housing and insert it into the Z axis motor plate. Next, insert the flanged bearing into the Z axis motor plate and secure it with two M5x8mm button head cap screws.
Make sure that the bearing plate and the Z Coupler part are flush and have equal spacing. The spacing between the two parts is important, as too much spacing will cause the leadscrew to become tight. The screws should be very loose, with the exception of the ones that engage the nylocks. After installing the bearing, the next step is to start the Z axis. Once this is done, you’ll be able to move it around with a stepper.

Angular contact

bearing
Ball bearings are made with angular contacts that result in an angle between the bearing’s races. While the axial load moves in one direction through the bearing, the radial load follows a curved path, tending to separate the races axially. In order to minimize this frictional effect, angular contact bearings are designed with the same contact angle on the inner and outer races. The contact angle must be chosen to match the relative proportions of the axial and radial loads. Generally, a larger contact angle supports a higher axial load, while reducing radial load.
Ball bearings are the most common type of angular contact bearings. Angular contact ball bearings are used in many applications, but their primary purpose is in the spindle of a machine tool. These bearings are suitable for high-speed, precision rotation. Their radial load capacity is proportional to the angular contact angle, so larger contact angles tend to enlarge with speed. Angular contact ball bearings are available in single and double-row configurations.
Angular contact ball bearings are a great choice for applications that involve axial loads and complex shapes. These bearings have raceways on the inner and outer rings and mutual displacement along the axial axis. Their axial load bearing capacity increases as the contact Angle a rises. Angular contact ball bearings can withstand loads up to five times their initial weight! For those who are new to bearings, there are many resources online dedicated to the subject.
Despite their complexity, angular contact ball bearings are highly versatile and can be used in a wide range of applications. Their angular contact enables them to withstand moderate radial and thrust loads. Unlike some other bearings, angular contact ball bearings can be positioned in tandem to reduce friction. They also feature a preload mechanism that removes excess play while the bearing is in use.
Angular contact ball bearings are made with different lubricants and cage materials. Standard cages for angular contact ball bearings correspond to Table 1. Some are machined synthetic resins while others are molded polyamide. These cage materials are used to further enhance the bearing’s axial load capacity. Further, angular contact ball bearings can withstand high speeds and radial loads. Compared to radial contact ball bearings, angular contact ball bearings offer the greatest flexibility.

Ball bearings

bearing
Ball bearings are circular structures with two separate rings. The smaller ring is mounted on a shaft. The inner ring has a groove on the outer diameter that acts as a path for the balls. Both the inner and outer ring surfaces are finished with very high precision and tolerance. The outer ring is the circular structure with the rolling elements. These elements can take many forms. The inner and outer races are generally made of steel or ceramic.
Silicon nitride ceramic balls have good corrosion resistance and lightweight, but are more expensive than aluminum oxide balls. They also exhibit an insulating effect and are self-lubricating. Silicon nitride is also suitable for high-temperature environments. However, this type of material has the disadvantage of wearing out rapidly and is prone to cracking and shattering, as is the case with bearing steel and glass. It’s also less resistant to heat than aluminum oxide, so it’s best to buy aluminum nitride or ceramic ball bearings for applications that are subjected to extremely high temperatures.
Another type of ball bearings is the thrust bearing. It has a special design that accommodates forces in both axial and radial directions. It is also called a bidirectional bearing because its races are side-by-side. Axial ball bearings use a side-by-side design, and axial balls are used when the loads are transmitted through the wheel. However, they have poor axial support and are prone to separating during heavy radial loads.
The basic idea behind ball bearings is to reduce friction. By reducing friction, you’ll be able to transfer more energy, have less erosion, and improve the life of your machine. With today’s advances in technology, ball bearings can perform better than ever before. From iron to steel to plastics, the materials used in bearings have improved dramatically. Bearings may also incorporate an electromagnetic field. So, it’s best to select the right one for your machine.
The life expectancy of ball bearings depends on many factors, including the operating speed, lubrication, and temperature. A single million-rpm ball bearing can handle between one and five million rotations. As long as its surface contact area is as small as possible, it’s likely to be serviceable for at least one million rotations. However, the average lifespan of ball bearings depends on the application and operating conditions. Fortunately, most bearings can handle a million or more rotations before they start showing signs of fatigue.

Sliding-contact bearings

bearing
The basic principle behind sliding-contact bearings is that two surfaces move in contact with one another. This type of bearing works best in situations where the surfaces are made of dissimilar materials. For instance, a steel shaft shouldn’t run in a bronze-lined bore, or vice versa. Instead, one element should be harder than the other, since wear would concentrate in that area. In addition, abrasive particles tend to force themselves into the softer surface, causing a groove to wear in that part.
Sliding-contact bearings have low coefficients of friction and are commonly used in low-speed applications. Unlike ball and roller bearings, sliding contact bearings have to be lubricated on both sides of the contacting surfaces to minimize wear and tear. Sliding-contact bearings generally are made of ceramics, brass, and polymers. Because of their lower friction, they are less accurate than rolling-element bearings.
Sliding-contact bearings are also known as plain or sleeve bearings. They have a sliding motion between their two surfaces, which is reduced by lubrication. This type of bearing is often used in rotary applications and as guide mechanisms. In addition to providing sliding action, sliding-contact bearings are self-lubricating and have high load-carrying capacities. They are typically available in two different types: plain bearings and thrust bearings.
Sliding-contact linear bearing systems consist of a moving structure (called the carriage or slide) and the surfaces on which the two elements slide. The surfaces on which the bearing and journal move are called rails, ways, or guides. A bore hole is a complex geometry, and a minimum oil film thickness h0 is usually used at the line of centers. It is possible to have a sliding-contact bearing in a pillow block.
Because these bearings are porous, they can absorb 15 to 30% of the lubrication oil. This material is commonly used in automobile and machine tools. Many non-metallic materials are used as bearings. One example is rubber, which offers excellent shock absorbency and embeddability. While rubber has poor strength and thermal conductivity, it is commonly used in deep-well pumps and centrifugal pumps. This material has high impact strength, but is not as rigid as steel.

China Huge industrial machinery bearing 6316 DGBB     double row ball bearingChina Huge industrial machinery bearing 6316 DGBB     double row ball bearing
editor by CX 2023-03-31

Slewing bearings

As one of the slewing bearings manufacturers, suppliers, and exporters of mechanical products, We offer slewing bearings and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of slewing bearings.

Recent Posts